Plan Academic Session: 2025-26 Department of Chemistry Jagannath Barooah University, Jorhat

Name of the Teacher: GAUTAM KALITA

Semester: ODD

Class/ Sem	Title & Code of The Paper Allotted (Credit)	Method of Teaching	Teaching Material	Unit	Topic	Period/ Hours	Details of the Contents	Remarks / Books
Sem I, UG	GENERAL CHEMISTRY- I CHMMJ-011	Chalk and talk, PPT	Textbook, Diagrams	V	Gaseous State:	15	Kinetic molecular model of a gas; collision frequency; collision diameter; mean free path and viscosity of gases, relation between mean free path and coefficient of viscosity, calculation of σ from η; Maxwell distribution, kinetic energy, law of equipartition of energy, degrees of freedom and molecular basis of heat capacities. Behaviour of Real Gases: Causes of deviation from ideal	

				behaviour. Van der Waals equation of state, mention of other equations of state (Berthelot, Dietrici); virial equation of state; van der Waals equation expressed in virial form and calculation of Boyle temperature. Isotherms of real gases and their comparison with van der Waals isotherms, continuity of states, critical state, relation between critical constants and van der Waals constants, law of corresponding states.
	VI	Liquid State:	5	Molecular forces and general properties of liquids. Surface Tension: surface tension, surface energy, effect of temperature on surface tension, shapes of liquid drops and soap bubbles, capillary action, determination of surface tension by capillary rise

GENERAL	Chalk and	Taythook	UNIT-V	Gaseous	15	method, drop weight and drop number methods using stalagmometer. Effect of temperature on surface tension. Parachor, Additive and constitutive properties: atomic and structural parachor. Elucidation of structure of benzene and benzoquinone. Viscosity: Definition, viscosity coefficient, fluidity, molecular viscosity, relative viscosity and absolute viscosity and absolute viscosity using Ostwald viscometer. Effect of temperature, size, weight, shape of molecules and intermolecular forces.
CHEMISTRY- I CHMMI-011	talk, PPT	Textbook, Diagrams	UNII-V	State	Lectures;	of a gas: postulates and derivation of the kinetic

1			1		
				gas equation; collision	
				frequency; collision	
				diameter; mean free path	
				and viscosity of gases,	
				including their	
				temperature and pressure	
				dependence, relation	
				between mean free path	
				and coefficient of	
				viscosity, calculation of σ	
				from η; variation of	
				viscosity with	
				temperature and pressure.	
				Maxwell distribution and	
				its use in evaluating	
				molecular velocities	
				(average, root mean	
				square and most	
				probable) and average	
				kinetic energy, law of	
				equipartition of energy,	
				degrees of freedom and	
				molecular basis of heat	
				capacities. Behaviour of	
				Real Gases: Deviations	
				from ideal gas behaviour,	
				compressibility factor, Z,	

		and its variation with	
		pressure for different	
		gases. Causes of	
		deviation from ideal	
		behaviour. Van der Waals	
		equation of state, its	
		derivation and application	
		in explaining real gas	
		behaviour, mention of	
		other equations of state	
		(Berthelot, Dietrici);	
		virial equation of state;	
		van der Waals equation	
		expressed in virial form	
		and calculation of Boyle	
		temperature. Isotherms of	
		real gases and their	
		comparison with van der	
		Waals isotherms, 6 Minor	
		Syllabus of FYUGP in	
		Chemistry Jagannath	
		Barooah College	
		continuity of states,	
		critical state, relation	
		between critical constants	
		and van der Waals	
		constants, law of	

							Solubility and solubility product of sparingly soluble salts – applications of solubility product principle. Theory of acid–base indicators; selection of indicators and their limitations. hydrolysis and hydrolysis constants.	
SEM V	PHYSICAL CHEMISTRY- II CHMMJ- 053	Chalk and talk, PPT	Textbook, Diagrams	Unit I	Chemical Kinetics	16 Lectures	Order and molecularity of a reaction, rate laws in terms of the advancement of a reaction, differential and integrated form of rate expressions up to second order reactions, experimental methods of the determination of rate laws, kinetics of complex reactions (integrated rate expressions up to first order only): (i) Opposing reactions (ii) parallel reactions and (iii) consecutive reactions and	

			emical 7 uilibriu Lectures	their differential rate equations (steady state approximation in reaction mechanisms) (iv) chain reactions. Temperature dependence of reaction rates; Arrhenius equation; activation energy. Collision theory of reaction rates, Lindemann mechanism, qualitative treatment of the theory of absolute reaction rates. Criteria of thermodynamic equilibrium, degree of advancement of reaction, chemical equilibria in ideal gases, concept of fugacity. Thermodynamic derivation of relation between Gibbs free energy of reaction and reaction quotient. Coupling of exoergic and endoergic reactions.	
--	--	--	-------------------------------	---	--

							Equilibrium constants and their quantitative dependence on temperature, pressure and concentration. Free energy of mixing and spontaneity; thermodynamic derivation of relations between the various equilibrium 32 32 P a g e Major Syllabus of FYUGP in Chemistry Jagannath Barooah College constants Kp, Kc and Kx. Le Chatelier principle (quantitative treatment); equilibrium between ideal gases and a
							pure condensed phase.
SEM I, PG	PHYSICAL CHEMISTRY I PCHMC - 103	Chalk and talk, PPT	Textbook, Diagrams	Unit I	Equilibriu m Thermody namics	13 Lectures	• Fugacity, ideal/non-ideal solutions, activity and activity coefficient, excess functions. • Partial molar quantities (chemical potential,

					partial molar volume), thermodynamics of mixing. • Third law of thermodynamics, experimental verification, absolute entropy determination.	
		Unit II:	Quantum Chemistry -I	12 Lectures	Review of Quantum Mechanics: Postulates, operators, commutation relation, theorems. • Model Systems: Free particle, particle in a box (1D, 3D), degeneracy. • Simple Harmonic Oscillator, two-particle rigid rotor, particle in a ring, quantum mechanical tunneling.	

Semester: EVEN

Class/ Title &	Code Method of	Teaching	Unit	Topic	Period/	Details of the Contents	Remarks
----------------	----------------	----------	------	-------	---------	--------------------------------	---------

Sem	of The Paper Allotted (Credit)	Teaching	Material			Hours		/ Books
SEM II, UG	GENERAL CHEMISTRY- II CHMMJ- 021	Chalk and talk, PPT	Textbook, Diagrams	UNIT-V	Chemical Thermody namics	10 Lectures;	Second Law: Concept of entropy; thermodynamic scale of temperature, statement of the second law of thermodynamics; molecular and statistical interpretation of entropy. Calculation of entropy change for reversible and irreversible processes. Third Law: Statement of third law, concept of residual entropy, calculation of absolute entropy of molecules	
	GENERAL CHEMISTRY- II CHMMI- 021	Chalk and talk, PPT	Textbook, Diagrams	UNIT-V	Chemical Thermody namics	10 Lectures;	Second Law: Concept of entropy; thermodynamic scale of temperature, statement of the second law of thermodynamics; molecular and statistical interpretation of entropy. Calculation of entropy change for reversible and irreversible processes. Third Law: Statement of	

						third law, concept of residual entropy, calculation of absolute entropy of molecules
SEM IV, U	Chalk and talk, PPT	Textbook, Diagrams	Unit-V	Solid State	16 Lectures	Nature of the solid state, law of constancy of interfacial angles, law of rational indices, Miller indices, elementary ideas of symmetry, symmetry elements and symmetry operations, qualitative idea of point and space groups, seven crystal systems and fourteen Bravais lattices; X-ray diffraction, Bragg's law, a simple account of rotating crystal method and powder pattern method. Analysis of powder diffraction patterns of NaCl, CsCl and KCl. Defects in crystals. Glasses and

							liquid crystals.
SEM IV	PHYSICAL CHEMISTRY- I CHMMJ-043	Chalk and talk, PPT	Textbook, Diagrams	Unit IV	Free Energy Functions	10 Lectures	:: Gibbs and Helmholtz energy; variation of S, G, A with T, V, P; Free energy change and spontaneity. Relation between Joule-Thomson coefficient and other thermodynamic parameters; inversion temperature; Gibbs- Helmholtz equation; Maxwell relations; thermodynamic equation of state.
				Unit-V	Systems of Variable Compositi on	10 Lectures	Partial molar quantities, dependence of thermodynamic parameters on composition; Gibbs- Duhem equation, chemical potential of ideal mixtures, change in thermodynamic functions in mixing of ideal gases.

SEM	PHYSICAL		UNIT II	Conductan	16	Arrhenius theory of	٦
VI, UG	CHEMISTRY-			ce	Lectures	electrolytic dissociation.	
	III CHMMJ-					Conductivity, equivalent	
	063					and molar conductivity	
						and their variation with	
						dilution for weak and	
						strong electrolytes. Molar	
						conductivity at infinite	
						dilution. Kohlrausch law	
						of independent migration	
						of ions. Debye-Huckel-	
						Onsager equation, Wien	
						effect, Debye-	
						Falkenhagen effect,	
						Walden's rules. Ionic	
						velocities, mobilities and	
						their determinations,	
						transference numbers and	
						their relation to ionic	
						mobilities, determination	
						of transference numbers	
						using Hittorf and Moving	
						Boundary methods.	
						Applications of	
						conductance	
						measurement: (i) degree	
						of dissociation of weak	

		UNIT IV	Solutions	10	electrolytes, (ii) ionic product of water (iii) solubility and solubility product of sparingly soluble salts, (iv) conductometric titrations, and (v) hydrolysis constants of salts. Dilute solutions; lowering
			and Colligativ e Properties	Lectures	of vapour pressure, Raoult's and Henry's Laws and their applications. Thermodynamic derivation using chemical potential to derive relations between the four colligative properties [(i) relative lowering of vapour pressure, (ii) elevation of boiling point, (iii) Depression of freezing point, (iv)
					osmotic pressure] and amount of solute. Applications in

			calculating molar masses of normal, dissociated and associated solutes in	
			solution.	1

Make a teaching plan for the session 2025-26 for even and odd semester. The table should include the following columns, class/semester, Title & Code of The Paper Allotted(credit), method of teaching, teaching material, unit, topic, period/hours required, details of the contents, remarks/books. The name of the teacher is Dr. Anirban Garg and he is from the department of Chemistry. The following course are being taught by him- CHMMJ-021(Unit III), CHMMI-021(Unit III), CHMMJ-042(Unit I & Unit

II), CHMMJ-044(SECTION B), CHMVA-021(Unit II), CHMMJ-032(Unit IV), CHMMJ-033(SECTION B), CHMMI-031(Unit IV), CHMMU-031(Unit III), CHMMJ-052(Unit I, Unit VII & VIII), CHMMJ-054(Section B, Unit I). Compile as a formatted Word table.

^{*}Faculty members may use ChatGPT by entering the following prompt to receive a quick and structured output.