Teaching Plan Department of Zoology Jagannath Barooah University, Jorhat Academic Session: 2025-26 Name: Dr. Rashmi Rekha Saikia Semester: I **Program: Major & VAC** | Class/
Semes
ter | Title & Code of
The Paper
Allotted (Credit) | Method of
Teaching | Teaching
Material | Unit | Topic | Period
/ Hours
Requir
ed | Details of the Contents | Remarks / Books | |------------------------|---|--|--|---------------|--|-----------------------------------|--|---| | Sem I | ZOOMJ-011/T
ANIMAL
DIVERSITY &
SYSTEMATICS | White board, Power point presentation, Online video, Interaction with the students, Sudden tests, Seminars | Textbooks,
Reference
books,
Diagrams,
Models | Unit-4 Unit-5 | Pisces, Amphibia Amniotes; Reptiles; Aves; Mammalia | 8 Hours 7 Hours | Characters & classification of Pisces, Osmoregulation and Migration of Fishes. General characters & classification of Amphibia, Adaptations for terrestrial life, Parental care in Amphibia. General characters & classification of Reptiles, Terrestrial adaptations in reptiles. General characters of birds; Flight adaptations. General characters; Affinities of prototheria. | Kardong, K. V. (2018). Vertebrates: Comparative Anatomy, Function and Evolution. 8th Edition, Tata McGraw Hill Publishing Company. New Delhi | | Sem I | ZOOMJ-011/P
ANIMAL
DIVERSITY &
SYSTEMATICS | Dissection, Demonstration of Permanent slide, Museum specimen | Permanent
slide,
Museum
specimen | | Chordate: Museum specimen Temporary mount | 5 Hours | Pristis, Hippocampus, Labeo, Icthyophis/Uraeotyphlus, Salamander, Rhacophorus Draco, Uromastix, Naja, Viper, model of Archaeopteryx, any three common birds- (Crow, duck, Owl), Squirrel and Bat. Temporary mounts of Unstained mounts of Placoid, Cycloid and Ctenoid scales | Kapoor, V C (2019). Theory and Practice of Animal Taxonomy and Biodiversity. Oxford & IBH Publishing | | Sem I | EVEVA-011
Environmental
Education | Lecture, Field
Visit | Text book,
Reports,
Reference
books | Unit-4 | Environment al degradation and its impacts | 8 Hours | Human population growth and its impacts on environment; land use change, deforestation, habitat fragmentation land degradation, soil erosion and desertification, Concept of environmental hazards. A brief account of air, | | | Class/
Semes
ter | Title & Code of
The Paper
Allotted (Credit) | Method
Teaching | of | Teaching
Material | Unit | Topic | Period
/ Hours
Requir
ed | Details of the Contents | Remarks / Books | |------------------------|---|---------------------|------|--|--------|-----------------------------|-----------------------------------|---|-----------------| | | | | | | | | | water, soil and noise pollutions- causes, effect and control measures, Concept of climate change: Green-house effect, global warming; ozone layer depletion, acid rains and their impacts on human communities and agriculture | | | Sem I | EVEVA-011
Environmental
Education | Lecture, F
Visit | ield | Text book,
Reports,
Reference
Books | Unit-5 | Conservation of Environment | 7 Hours | Concept of sustainability and sustainable development with judicious use of land, water and forest resources; afforestation. Conservation of nature and natural resources, man-animal conflict Environment Laws: Environment Protection Act; Wildlife Protection Act; Forest Conservation Act. International agreements: Montreal and Kyoto protocols Environmental movements: Bishnois of Rajasthan, Chipko, Silent valley | | Semester: III Program: Major | Class/
Semes
ter | Title & Code of
The Paper
Allotted (Credit) | Method of
Teaching | Teaching
Material | Unit | Topic | Period/
Hours
Require
d | Details of the Contents | Remarks / Books | |------------------------|---|--|----------------------|--------|--|----------------------------------|---|--| | Sem III | ZOOMJ- 031/T
Cell Biology | Use of white board, Lecture, Power point presentation, | Diagrams, | Unit-5 | Cytoskeleton | 7 Hours | Structure and Functions: Microtubules, Microfilaments and Intermediate filaments Structure of Nucleus: Nuclear envelope, | Cooper, G.M. and Hausman, R.E. (2009). <i>The Cell: A Molecular Approach</i> . V Edition. | | | | Online video, Google classroom, Interaction with the students, Sudden tests, | Models | Uni -6 | Nucleus | 8 Hours | Nuclear pore complex, Nucleolus Chromatin: Euchromatin and Heterochromatin and packaging (nucleosome). | ASM Press and
Sunderland,
Washington, D.C.;
Sinauer Associates,
MA. | | | | Seminars | | Unit-7 | Cell Division
& Cell
Signaling | 8 Hours | Mitosis, Meiosis, Cell cycle and its regulation, normal and malignant cell growth, apoptosis, GPCR and Role of second messenger (cAMP). | Bruce Albert, Bray Dennis, Levis Julian, Raff Martin, Roberts Keith and Watson James (2008). Molecular Biology of the Cell, V Edition, Garland publishing Inc., New York and London. | | Sem III | ZOOMJ- 031/P
Cell Biology | Demonstration
and preparation of
Permanent slide | Slide, onion roots | | Slide
preparation
and slide
showing | 8 Hours | Preparation of temporary stained squash of onion root tip to study various stages of mitosis Study of various stages of meiosis. | | Semester: V Program: Major & Minor | Class/
Semes
ter | Title & Code of
The Paper
Allotted (Credit) | Method of
Teaching | Teaching
Material | Unit | Topic | Period/
Hours
Require
d | Details of the Contents | Remarks / Books | |------------------------|---|--|---|---------------|--|----------------------------------|--|---| | Sem V | ZOOMJ- 051/T
Molecular Biology | Use of white board, Lecture Power point presentation, Online video, | Textbooks,
Reference
books,
Diagrams,
Models, | Unit-1 Unit-2 | Nucleic
Acids
DNA | 6 Hours | Salient features of DNA and RNA; Watson and Crick model of DNA DNA Replication in prokaryotes and eukaryotes, mechanism of DNA replication, Semi-conservative, | Bruce Alberts,
Alexander Johnson,
Julian Lewis, Martin
Raff, Keith Roberts,
Peter Walter:
Molecular Biology of | | | | Google classroom,
Interaction with
the students,
Sudden tests, | Charts | | Replication | | bidirectional and semi-discontinuous
replication, RNA priming, Replication of
circular and linear ds-DNA, replication
of telomeres | the Cell, IV Edition Karp, G. (2010) Cell and Molecular | | | | Seminars | | Unit-7 | DNA repair
Mechanism
s | 6 Hours | Pyrimidine dimerization and mismatch repair. | Biology: Concepts
and Experiments. VI
Edition. John Wiley
and Sons. Inc | | Sem V | ZOOMJ- 051/T
Molecular Biology | Hands-on
practical work | Culture
media,
Bacterial
culture | | | 8 Hours | Preparation of liquid culture medium (LB) and raise culture of <i>E. coli</i> preparation of solid culture medium (LB) and growth of E. coli by spreading and streaking, Demonstration of antibiotic sensitivity/resistance of E. coli to antibiotic pressure and interpretation of results | Griffiths, A.J.F., J.H. | | Sem V | ZOOMJ- 054
Biotechnology &
Bioinformatics/T | Use of white board, Lecture Power point presentation, Online video, Google classroom, Interaction with the students, Sudden tests, | Textbook,
Reference
books,
Diagrams,
Models | Unit-2 | Molecular
Techniques
in Gene
manipulati
on | 9 Hours | Cloning Principle, Cloning vectors: Plasmids, Cosmids, Phagemids, Lambda Bacteriophage, BAC, YAC, and expression vectors (characteristics only) Restriction enzymes: Type II – Blunt end cutter and sticky end cutter, Transformation techniques: Calcium chloride method and electroporation. | Miller, Suzuki, D.T.,
Lewontin, R.C. and
Gelbart, W.M.
(2009). An
Introduction to
Genetic Analysis. IX
Edition. Freeman
and Co., N.Y., USA | | Class/
Semes
ter | Title & Code of
The Paper
Allotted (Credit) | Method of
Teaching | Teaching
Material | Unit | Topic | Period/
Hours
Require
d | Details of the Contents | Remarks / Books | |------------------------|---|---|---|--------|--|----------------------------------|---|---| | | | Seminars | | | | | Construction of genomic and cDNA libraries and screening by blue white colony selection method Blotting techniques- Southern, Northern and Western blotting; DNA sequencing: Sanger dideoxy sequencing method Polymerase Chain Reaction, DNA Finger Printing, Southern Blotting, DNA Sequencing (Sanger's Method), PCR, DNA fingerprinting, | Watson, J.D., Myers, R.M., Caudy, A. and Witkowski, J.K. (2007). Recombinant DNA-Genes and Genomes-A Short Course. III Edition, Freeman and Co., N.Y., USA | | Sem V | ZOOMJ- 054
Biotechnology &
Bioinformatics/T | Use of white board, Lecture Power point presentation, Online video, Google classroom, Interaction with the students, Sudden tests, Seminars | | Unit-4 | Fundament
als of
Bioinforma
tics | 9 Hours | Concept and scope of bioinformatics, Introduction to biological databases; Primary, secondary and composite databases; Nucleic acid databases (GenBank, DDBJ, EMBL); Protein databases (PIR, SWISSPROT, TrEMBL, PDB); Metabolic pathway database (KEGG); Small molecule databases (PubChem). Data mining and data mining tools (ENTREZ) | Pevsner, J (2009). Bioinformatics and Functional Genomics. II Edition Wiley- Blackwell | | | ZOOMJ- 054
Biotechnology &
Bioinformatics/P | Demonstration
and in silico
practical | | | Bioinforma
tics | 7 Hours | of nucleotide and protein sequences from databases, to perform pair-wise alignment of sequences (BLAST) and interpret the outcome, translate a nucleotide sequence and select the correct reading frame of the polypeptide from the output sequence | | | Sem V | ZOOMI- 054
Biotechnology &
Bioinformatics/T | Use of white
board, Lecture
Power point
presentation, | Textbook,
Reference
books,
Diagrams,
Models | Unit-2 | Molecular
Techniques
in Gene
manipulati
on | 9 Hours | Cloning Principle, Cloning vectors: Plasmids, Cosmids, Phagemids, Lambda Bacteriophage, BAC, YAC, and expression vectors (characteristics only) | | | Class/
Semes
ter | Title & Code of
The Paper
Allotted (Credit) | Method of
Teaching | Teaching
Material | Unit | Topic | Period/
Hours
Require
d | Details of the Contents | Remarks / Books | |------------------------|---|--|---|--------|--|----------------------------------|--|--| | Sem V | ZOOMI- 054
Biotechnology &
Bioinformatics/T | Online video,
Google classroom,
Interaction with
the students,
Sudden tests,
Seminars | Textbook,
Reference
books,
Diagrams,
Models | Unit-2 | Molecular
Techniques
in Gene
manipulati
on | 9 Hours | Restriction enzymes: Type II – Blunt end cutter and sticky end cutter, Transformation techniques: Calcium chloride method and electroporation. Construction of genomic and cDNA libraries and screening by blue white colony selection method Blotting techniques- Southern, Northern and Western blotting; DNA sequencing: Sanger dideoxy sequencing method Polymerase Chain Reaction, DNA Finger Printing, Southern Blotting, DNA Sequencing (Sanger's Method), PCR, DNA fingerprinting, | Griffiths, A.J.F., J.H. Miller, Suzuki, D.T., Lewontin, R.C. and Gelbart, W.M. (2009). An Introduction to Genetic Analysis. IX Edition. Freeman and Co., N.Y., USA | | Sem V | ZOOMI- 054 | Domonstration | | Unit-4 | Fundament
als of
Bioinforma
tics | | Concept and scope of bioinformatics, Introduction to biological databases; Primary, secondary and composite databases; Nucleic acid databases (GenBank, DDBJ, EMBL); Protein databases (PIR, SWISSPROT, TrEMBL, PDB); Metabolic pathway database (KEGG); Small molecule databases (PubChem). Data mining and data mining tools (ENTREZ) | Pevsner, J (2009). Bioinformatics and Functional Genomics. II Edition Wiley- Blackwell | | Sem v | Biotechnology & Bioinformatics/P | Demonstration
and in silico
practical | | | Bioinforma
tics | 7 Hours | Accessing biological database, Retrieval of nucleotide and protein sequences from databases, to perform pair-wise alignment of sequences (BLAST) and interpret the outcome, translate a nucleotide sequence and select the correct reading frame of the polypeptide from the output sequence | |